Function coordinateTransformer

get a function that maps index-coordinates of image0-coordinate-space to the index-coordinates of image1-coordinate-space
note that if you're mapping lots of indexes using Array.map, it would be 40-times faster to use the lambdacalc.vectorize1 function instead

// suppose you have an RGBA image data buffer of `width = 100`, `height = 50`, `channels = 4` <br>
// and you have an array of 6 pixel indexes: `idx0 = [1040, 1044, 1048, 1140, 1144, 1148]` <br>
// and you want to convert these indexes to that of an LA image data buffer of `width = 10`, `height = 10`, `channels = 2`, `x = 5`, `y = 10`
// then:
const
coords0 = {x: 0, y: 0, width: 100, height: 50, channels: 4},
coords1 = {x: 5, y: 10, width: 10, height: 10, channels: 2},
coords0_to_coords1 = coordinateTransformer(coords0, coords1),
idx0 = [4040, 4044, 4048, 4440, 4444, 4448],
idx1 = idx0.map(coords0_to_coords1) // [10, 12, 14, 30, 32, 34]

/** the equation for mask_intervals can be easily derived as follows:

  • p0 = px of data, y0 = y-coords of pixel in data, x0 = x-coords of pixel in data, w0 = width of data, c0 = channels of data
  • p1 = px of mask, y1 = y-coords of pixel in mask, x1 = x-coords of pixel in mask, w1 = width of mask, c1 = channels of mask
  • y = y-coords of mask's rect, x = x-coords of mask's rect
declare let [w0, w1, c0, c1]: number[]
let
p0 = (x0 + y0 * w0) * c0,
x0 = (p0 / c0) % w0,
y0 = trunc(p0 / (c0 * w0)),
p1 = (x1 + y1 * w1) * c1,
x1 = (p1 / c1) % w1,
y1 = trunc(p1 / (c1 * w1)),
x = x0 - x1,
y = y0 - y1

// so, now:
p1 = c1 * (x1 + y1 * w1)
p1 = c1 * ((x0 - x) + (y0 - y) * w1)
p1 = c1 * ((((p0 / c0) % w0) - x) + (((p0 / c0) / w0 | 0) - y) * w1)
  • Parameters

    Returns ((i0: number) => number)

    (i0: number & coord0) => i1 as number & coord1 a function that takes in an integer index from coordinate space coords0 and converts it so that it's relative to coordinate space coords1

      • (i0): number
      • Parameters

        • i0: number

        Returns number