@oazmi/kitchensink - v0.9.13
    Preparing search index...

    Function coordinateTransformer

    • get a function that maps index-coordinates of image0-coordinate-space to the index-coordinates of image1-coordinate-space.

      note that if you're mapping lots of indexes using Array.map, it would be nearly 40-times faster to use the lambdacalc.vectorize1 function instead.

      Parameters

      Returns (i0: number) => number

      (i0: number & coord0) => i1 as number & coord1 a function that takes in an integer index from coordinate space coords0 and converts it so that it's relative to coordinate space coords1

      // suppose you have an RGBA image data buffer of `width = 100`, `height = 50`, `channels = 4`,
      // and you have an array of 6 pixel indexes: `idx0 = [1040, 1044, 1048, 1140, 1144, 1148]`,
      // and now, you want to convert these indexes to that of an "LA" image data buffer of:
      // `width = 10`, `height = 10`, and `channels = 2`, `x = 5`, `y = 10`
      // then:
      const
      coords0 = {x: 0, y: 0, width: 100, height: 50, channels: 4 as const},
      coords1 = {x: 5, y: 10, width: 10, height: 10, channels: 2 as const},
      coords0_to_coords1 = coordinateTransformer(coords0, coords1),
      idx0 = [4040, 4044, 4048, 4440, 4444, 4448],
      idx1 = idx0.map(coords0_to_coords1) // [10, 12, 14, 30, 32, 34]

      the equation for mask_intervals can be easily derived as follows:

      • p0 = px of data, y0 = y-coords of pixel in data, x0 = x-coords of pixel in data, w0 = width of data, c0 = channels of data
      • p1 = px of mask, y1 = y-coords of pixel in mask, x1 = x-coords of pixel in mask, w1 = width of mask, c1 = channels of mask
      • y = y-coords of mask's rect, x = x-coords of mask's rect
      declare let [w0, w1, c0, c1]: number[]
      let
      p0 = (x0 + y0 * w0) * c0,
      x0 = (p0 / c0) % w0,
      y0 = trunc(p0 / (c0 * w0)),
      p1 = (x1 + y1 * w1) * c1,
      x1 = (p1 / c1) % w1,
      y1 = trunc(p1 / (c1 * w1)),
      x = x0 - x1,
      y = y0 - y1

      // so, now:
      p1 = c1 * (x1 + y1 * w1)
      p1 = c1 * ((x0 - x) + (y0 - y) * w1)
      p1 = c1 * ((((p0 / c0) % w0) - x) + (((p0 / c0) / w0 | 0) - y) * w1)